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ABSTRACT. Oscillations of a gas flow around a lattice of
plates were studied with the application of the contraction
method for solution. Also considered were natural oscilla-
tions of gas in an infinite plane, channelling them annularly,
given the condition of spatial periodicity of flow.

The contraction method is used to solve the problém of the natural oscil- /68*

lations of a gas flowing about a lattice of plates. In addition, under the
condition of spatial periodicity of the flow, the natural oscillations of a gas
in an infinite plate are considered, modeling the natural oscillations of a gas

in an annular channel.

Interest in studying this problem was évoked by the results of a series of
experiments on the oscillations of a lattice of’plateé iﬁ é subsonic gas flow
[1-4]. It was demonstrated in these papers that for a certain combination of
lattice parameters and parameters of incident flow, the non-stationary aerody-
namic characteristics of the plates are highly dependent on these parameters.
From the physical standpoint, such phenomena found their explanation in the
acoustic resonance of the excited gas, produced by oscillations of the profile,
with corresponding dscillations of the gas in the lattice region in question.
It was noted in this regard that resonance regimes show a significant reduction

of aerodynamic deformation of the lattice oscillations.

This fact was mentioned in [5] in a study of the osci-lations in axial com-
pressors. It was in this paper that the relationships determining the values of
the natural oscillations of a gas inAan annular channei in a circular direction
were first stated. The same relationships, but in a different form and obtained

by other methods, are also found in [6, 7].

1. Let us begin by considering the problem of the natural oscillations of
a gas flow in an infinite plane. The periodic solutions of this problem will be

a model of the natural oscillations of a gas in an annular channel. The
*Numbers in the margin indicate pagination in the foreign text.




mathematical problem amounts to a determination of the solution of the equation,
limited to the entire plane, for the amplitude of the non-stationary component
‘of the potential of the flow rate ¢. In a dimensionless Cartesian system of

coordinates x and y; relative to some characteristic length ¢, it has the form
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Here w is the frequency of oscillation of the gas, U is the speed of the
undisturbed flow of gas along the x axis, and a is the speed of sound in an’

undisturbed flow.

Rotating axes z and y through angle B8, we shift to new dimensionless

coordlnates £, N

R L ETT T SR (.2)
In thrs system of eoordinates, (1.1) is changed to read as follows:
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We shall seek the general solution of (1.3) in the class of functibns which
are‘periodic in the direction n, with a period L which is equal to the length of
the circumference of the corresponding annular channel, also relative to c.

Then the function ¢ is represented by a Fourier series:

2 o (B) exp 2320 (1.4)
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and the partial periodic solution of (1.3) can be expressed as follows:
@n =exp (A, -+ 2mn / L) (1.5)
Substituting (1.5) in (1.3), we obtain the characteristic equation for

determining An’ whose solution has the form

Ao = Pancb i, A= 3B 2 1./smg]

1—Mzcos*B |

(1.6)
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Thus, the general solution of (1.3) which satisfies the condition of

periodicity in the direction of axis n has the form



(1.7)
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. If the subradical expression in (1.6) for A, is less than or equal to

2n
-zero, the corresponding term of the series (1.7)

© @n =exp [ (b + 20 ] L)] cos Ry’ (€ + 6)] (hgw = jhen’) (1.8)
‘where & is some arbitrary number, will be the natural function of the problem
in question. It satisfies (1.3) and is bounded in-the entire plane. Similar
solutions of the Helmhbltz equation for an infinite plane are given (for

example) in the book by Courant and Gilbert [8].

Let us extract from (1.8) the factor exp (jllng) which characterizes the
drift of the gas disturbance in the flow in the direction &, assuming
$, = exp (jklngj ¢n*. Then the function ¢n* exp (Jwt) will be a superposition
of two traveling waves, propagating in directions which are symmetrical rela-

tive to axis n. In the boundary case, when A, = 0, the function ¢h* exp (Jwt)

2n
is a traveling wave propagating only in the direction of axis n.

Let us introduce the designations

"L = Nbh, n =nN + m, , :2nm/N> :
L=t N —Lm=0, 21, %2,...) *(1.9)
where N is some natural number. Then
2nn _ 2mmp Ly
L TR (1.10)
and we can see that the condition Aoy = 0 coincides with the condition of

acoustic resonance of the natural oscillations of a gas in an infinite plane
with disturbances evoked by a pulsating chain of dipoles [7] arranged along
the axis n with intervals h:
25y +<!l_= ]TB,T[MSI{}QIJ/i ““.-‘/_‘COS":J] (=0, 4&1,...) (1.11)
From the physical standpoint, this means that a chain of dipoles, /70
radiating a disturbance, resonates with those natural oscillations of a gas

which do not contain waves approaching from left or right, from infinity to

the n axis.

As indicated in [2-5], condition (1.11) also determines some properties

of the non-stationary flow of a gas through the pléne lattice of a profile.
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relatlve to the semichord of the profile ¢, and the parameter 8 is the loss .

langle of the lattice. Like the pulsating chain of dipoles, the lattice is

the source of the excited gas; with synchronous oscillations of its profile

having identical amplitudes and a constant phase shift p, it stimulates a

corresponding form of natural oscillation in the infinite plane. The inter-
action of the lattice profiles with the gas decreases sharply, and the aero-
-dynamic damping of the oscillations of the profile also decreases. Defining
‘this phenomenon in flow around a lattice as acoustic resonance, we must men-
tion its definite conditionality, since the natural oscillations of a gas

in a "lattice" region in the general case do not coincide with the natural

‘oscillations we have considered.

2, In the case of flow around a lattice of plates by a subsonic stream
—of _gas, the problem of the natural values consists in the determination of
the non-trivial solution of (1.3) under the condition of limitation of the

lattice to an infinite extent behind and in front of the lattice (Flgure 1).

S e e < oc When [E]— >0 ’ e e (2 1) -

and with a uniform condition of non-flow of the gas through the plates:
Bcp/c?J:Owheny—n’LCODP j
nhsinB <o < nhsin B 42 (2.2)

We shall limit ourselves to a
consideration of those flows in

which there are no vortical traces

beyond the plates.. We shall seek

these solutions with the aid of the
method of contraction [9]. According

to this method, the flow region is

i » broken up into regions Dl* and D *
Figure T. . (located to the left and right, re-

spectively,-of the lattice and bounded by lines JOlnlng the leading and

'tralllng edges of the plates) and region D (enclosed becween the plates

.(Flgure 1)). In reglons_Dl* and D2 » in accordance with the concept of
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periodic functions (1.7), the most general expression for the natural func-
tions; with consideration of substitution (1.11) has the form

N1

o _
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It will be shown later on that any desired function in these regions
is described by one of the terms of the sum over m. In addition, from condi-
tion (2.1) and from the condition of the absence of waves arriving from in-

finity, it follows that the coefficients « are equal to zero in region

mnl
Dz* and coefficients bmnl are equal to zero in region Dl*. Therefore we
assume that for region Dl* '
‘of = exp (Ju——) 2 04 €5 [ (han -+ dan) & 4 j20n ] (2.4

and for region D,*

(Pg*:zexp( ) Z bne\p[(]}m—w,n) (8 —2c¢ sB)—{—annl/l—] (2.5)

T n=—00 L
In (2.4) and (2.5) and the equations that follow, the subscript 1 in - /71
n, in constants a and b is omitted.
1 mnl mnl

The functions,¢1* and ¢2* and their first derivatives will be continuous
in regions Dl* and Dz* with the possible exception of the values n = sh and
n=2sinpB + sh (s = 0, 1, *#2, ...) at their boundaries, corresponding to
the coordinates of thé edges of the profiles. From thin-wing theory we know
that at these points the derivative of the function of the speed potential
may have a singularity of the type (r - rs)_l/z, where ry is the coordinate
of one of the edges of the s-th profile and » is the radius vector of the
flowing coordinate. However, regardless of these singularities, the coeffi-
cients an' and b ' of the series for derivatives of the functions ¢1* and
¢2*, analogous to the series of expressions (2.4) and (2.5), tend toward zero

at n - » so that

2

h
ln-sco §[vﬁﬂh_-

—L f (71)]9\13 ( —%)dn = 25;;‘) .JO (nh).{_o(n"l)_>0



Here in the form co//ﬁfﬁgj*ﬁf'we have isolated the term with the
singularity from the derivative functions ¢1*(O, n, ¢2*(2 cos B, n). Con-
sequently, the series for the first derivative functions of the speed poten-
tial converge at any value of n, excluding the coordinates of the edges of

the profiles.

In regions Dn the general expression of the natural functions will be

. determined by the solution of mixed problems of the type

=0 with =0, @, =q* witht —2cosf |
09n [y =0 Wi‘t—:-ﬁj—nhcosﬁ Y = (v 1) heosp - (2.6)

The functions ¢n will be sought in the form of an infinite series of
solutions of (1.1), each of which satisfies the condition of not flowing
through. Considering that the first two conditibhs (2 6) differ for the
various regions only by the factor exp (Jnu), the general expre551on for the

function ¢ may be represented as follows

Pn -—67(5”171@) Z [eme m(”c 2 +d ¢ tm ]cos[:rnm( y ——n)]

——0 hcosP

2.7)
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m= i [(AZ‘ZQJ (1 —2a2%) — ] o o = T

The constant a and bn of functions (2.4) and (2.5) as well as the

constants ¢, and d_ of function (2.7) will be determined in accordance with -
the method of contraction from the condition of continuity of the desired

function and its normal derivative on lines £ = 0 and £ = 2 cos B, excluding,

"perhaps, the points which ocrrespond to the coordinates of the edges of the

profile. This automatically satisfies the first two conditions (2.6) for

~function (2.7).

It should be mentioned that it is sufficient to carry out the contrac-
tion of functions (2.4) and (2.5) with function (2.7) iﬁ the space of only
one # interval. On the remaining portions of the lines & = 0 and &£ = 2 cos B8
it is lacking due to the condition of periodicity. But since expréssiohs
(2.4) and' (2.5) describe the arbitrary function 6f the desired solution in

the space of one intexval, it is possible to state that summation over the
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subsc}ipt m in (2.3) does not give a more general idea of the desired solu-

tion Fnd may be eliminated.

"Thus, equating functions (2.4) and (2.5) and their derivatives in the
direction & to the function (2.7) and its derivative on lines & = 0 and.
£ = 2 cos B, respectively, we will obtain four relationships which link the

unknown constants.

For the sake of brevity, we shall write only two of these equations

-

which satisfy the conditions of continuity on the line g =

exp'm Z‘ a, exp

n=—to ,,
o
A inf-2 —2. ing, jsnsinB tm
= D) [ene m(MSME=2) | g o~rmAsing Jensing oo —rn
m=0
N - . m
27 _
exp ”;:] Z Cp (Fhin + Aon) €Xp —5— I '”1 = (2.8)
fi==—00
o .
== 2 g’“*‘S‘“B{COSB [Cm (Km + ]G) e m(ﬂsmp—f)) 'I“ ( }"m + ]G)e mnsins] X
m==0 . ‘

9 - e
X cos :rtmn + ——~tanB [c etm(nsing=2) —}— d, e ﬂsmB]s n ’}nn}

To determine the unknown constants from system (2.8) we will shift to
an infinite system of algebraic equations. With this goal in mind, the rela-
tionships obtained are multiplied on the left and right by the function
exp [-d (2mn + p) x n/k](n - 0, 1, 2,...) and inteérated over n from 0 to hA.
We will then have '

2 [Cm ZlmAnm'T'd Bnm]

m=0

f (2.9)
{cme-ﬂm [+ 10) cosB — L————“}Q"‘anﬁ] A+

Mé‘

.(]'Xm + Agn) @y =

m=0

+dn [( A+ ]J) cos 3 — g‘i;‘:é—)‘@]l@] Bnm}

/72



Here

R - Bnﬁ’ m ’ '
Anm = enm’2+ (..’Im)'-’ [(" 1) exp (enm ) - 11]
8" m ”
X Bnm:. e [(——' 1) exp (Onm_) ——'1]

0, + (am)?

Onn’ = j(chsinB — 2an —p) + A ksin®

0, -= j(chsinB — 2nn — py — A, hsin P

‘From each pair of the system (2.9) it is easy to exclude the constants
a,. Performing similar operations for the relationships that fulfill the
conditions of continuity on the line & = 2 cos B, the system of equations for

~-determining the unknown constants e, and dm'is obtained in the following

form:
3 o (omitand o
. m ; . ~2
- {cm [cosB( - JO) — —~Ze) B (han kgn)] Ay Sm 4
m=o * nm
-+ dm[cos B (— A, + jo) — ‘”,’fg'ta?—f — (Pn + o) | Bnm} =0 .
e ' (s earic ) . (2.10)
2 {cm [COS !3 (Km + ]5) — '—]{0—,—3 - (j}"m - xin) Anm +
m=0 nm N
) - b 2 ) . 7 ~22
+ dm [COS B (— ?"m + jG) - % - (]}“ln - 2".’n,)# En.me )m} = O
» - (n =0, :i:nl’,ni ..... ) .
Since system (2.10) will be uniform, the existence of its non-trivial /73

solution is possible only under the condition of equality to zero of the
determinant, composed of the coefficients at unknown constants. Thus, the
problem under consideration becomes one of determihing the natural values of

an infinite system of algebraic equations (2.10).

It should be mentioned that the approximate values -of the natural
numbers of the system (2.10), with the accuracy given in advance, can be de-
termined from the truncated system, i.e., we shall use the method of reduction
for its solution. 1In the general case, however, éven this problem poses
>sigﬂificant computational difficulties. For the sake of illustration, we have

listed below an analysis of the natural oscillations of a gas in a lattice’



area, using the simplest example of flow about a lattice without removal.

3. In the case of a lattice without removal (B = 0) the infinite
system of algebraic equations is simplified considerably. 1In fact, at
B = 0 the coefficients 4 =B , 6 ' =06 '"', ¢ =2

"me T [/ In

equations (2.10) assumes the form

and.the system of

Z} [em (A — M — m(}'m""}zn)] 1nm—-o

771

: -2 J
2 [em (A -+ }V-zn) —dp (7~m - 7"2,1) e m] Apm = 0

m==0
‘(n-—o +1 +2 )

From this it follows that e = dﬁ, and system (2.10) thus assumes the

form
[oe] ° 3 . :
S em b+ dgn— € ™ (A — )] Apm =0 (2 =0,1,2..) (3.1)
| m=0 EE - -
Note first of all that at u = 0 the coefficients A, =0 if m % 2n.
m
But since %1= A2n at m = 2n, it follows from system (3.1) that all constants

cmAand dﬁ (and consequently a, and bn as well) in this case are equal to
zero. Thus, at p = 0 there is no non-trivial solution of system (3.1).
Furthermore, ‘it is easy to see that if the value A becomes zero at some
fixed value of m, the two columns of the determlnant of the system will

converge.

Thus, tne condition Am = 0 determines the composition of the parameters

:::.._._- 14— 1[" #‘-—‘1{2,...)
g vi—or f (=52 - (3.2)°

at which a gas flowing about a lattice of plates without removal can complete
natural oscillations. The natural functions of (1 1) corresponding to these

osc1llat10ns have the form

@ == exp (;'oz) cos (may / kY ’ (3.3)
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| Note that (3.2) coincides with relationship (1.11) at B = 0 and U=,
i.e.,?in this partial case the natural oscillations of the gas in the lattice
regioh coincide with the natural oscillations of the gas in a dimensionless

plane.

In the case of induced oscillations of the lattice at a frequency that
satisfies condition (3.2), the period of the oscillations is a multiple of
‘the time required for the wave of disturbance to travel from some point on
the profile to the coryesponding point of the adjacent profile and, being
reflected, to return to the briginal point. If the vibrations of the adja-
cent profiles are then completed in antiphase, the disturbances evoked by

each of the profiles will be superposed and acoustic resonance will occur.

However, the natural oscillations of a gas that arise under condition
(3.2) do not exhaust the entire spectrum of natural oscillations which are
of practical interest for the case of a lattice of plates without removal.
The natural oscillations which are considered include only oscillations in
the transverse direction (in the direction of the front of the lattice). In
accordance with the results known from acoustics for open resonators [10],
we can expect natural oscillations of the gas in the longitudinal direction
as well, since the channels between the prbfiles are essentially resonators
of this kind, )

In the first approkimation the natural frequencies of such oscillations

will be determined from condition [6]

k= —M)am[2  (m=1,2...) (3.4)

corresponding to the case of complete reflection of a plahe wave with slight

disturbance from the open ends.

In reality, the plane wave is not reflected completely from the open
end, but interacts with the surrounding space, including -the adjacent channels
between profiles. Therefore, the corresponding natural function will not be
a simple plane wave, localizing itself in one chaﬁnel, but some complex /74
function in the entire flow plane, allowing for this interaction. The natural
‘frequencies.of-the oscillations will differ from the values determined by

(3.4).

10
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I Let us introduce the parameter o s taking into account the correction
at th% open end in (3.4), since the value of the introduced natural frequency

of the longitudinal oscillations of the gas is
bn= (M am (@ a2 (m=1,2,...) (3.5)

The value of the parameter o s as well as the natural function of the
desired oscillations, can be determined with the aid of the solution of

system (3.1).

Let us consider the example of the calculation form = 1, p = 7. In
this case, the expressions for the natural functions (2.4), (2.5) and (2.7)

are converted to the form

o

. , 2 1) 5
QpF = 2 a, exp [(]G + 7v2n)$]sin .(__M
. me=Q :
< 2n 41
CPz' — 2' bn exp [(]5 271) (Z’ — 2)] S] M‘L
=0 ’
- 2
Pu= 3} & e e3P b (5 —2) -+ diy 03 (— hg)] 05 ol e
Me==1 ’ o

1 2am o
L] }y f———— _ 9 .9
m =T [( ) ¢! ,1?1) A]

1 2n+'1‘2,, : /2
A, = 3 [[%n- 21 ;
o= =3 | (%5 )”“ ) — K]

Following the method of reduction, system (3:1) was truncated in calcu-
~~Tation to ¥ = 30 equations."The equality to zero of the determinant of the
truncated system at fixed values of M and % was viewed as an approximate
condition for the determination of the parameter o -

The results of the calculation of parameter o, as a function of the

dimensionless interval A at values of the numbér M i 0, 0.5 and 0.7 are shown
in Figure 2. Analyzing this curve, it is interesting to note that a; > 0 at
h ~» 0. From the physical point of view, this result can be explained by the
fact that with an increase in the length of the cﬁannel,.the amount of kinetic
energy of the disturbed gas radiated from the open end decreases relative to

the energy of the gas oscillating within the channel; at the limit (for an

11



infinitely long channel) it tends toward zero.

VER ’[ ' Let us list the results of the
% / i s

‘ M=0| 5~ -

iz | gﬁ//// calculation of the values of the
, ///22;5 a7 first ten desired coefficients a,
a,£/4ﬁ2§/ L and e, normalized over Ay at h = 1
0 ! and M = 0.7. .

04 08 1z 1§

Figure 2.

n == 0 1 2 3 4
0, = Lo 0.4660 0.0761 0.0462 ~ 0.0320

—ep= —0.69— j 3.12 0.2430  0.089S  0.0489 0.0316
n= - 5 . 6 7 8 9 10
a, = 0.0241 0.01914 0.0157 0.0132 | 0.0114 0.010l
Cp == 0,0224 0.0183 0.0132  0,0107 0.C089 0.0075

These values, accurate to the third decimal place, coincide with' the /75

coefficients calculated from a system truncated at 20 equations, which is an
indication of the good agreement of the method of reduction in this case.
However, as far as we can judge from the decrease of the coefficients, the

agreement of the derivatives of the desired function is poor.

This fact is illustrated by Figure 3, which shows the dependencies of
the normgl derivatives of functions ¢0 (solid curve) and ¢l* (dashed curve)
upon y on the line x = 0. It is clear from these curves that the normal
derivatives of the desired functions to the left and right of the line of
contraction differ from one another with respect to the magnitude of the
order of error of their approximation by a finite trigonometric series.
(Cohtraction of actual fun;tions ¢O and ¢1* in the case in question occurs
with an accuracy up' to 3-4 significant figures). In accordance with the
order of descent of the coefficients a, and bﬁ at the edges of the plates,
there is a clearly pronounced exclusion of the derivatives from the desired
functions. Depending on the structure of the solution, these features are

found at both ends of the plate.

12
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It should be noted that such
solutions evidently exist physically
only when ¥ = 0., In a flow with
M # 0, the maximum practical interest
is produced by solutions in a class
with limited derivatives at the
trailing edges of the plates. In
the general case, these solutiéns
must be sought with consideration
of the vortical traces and the
corresponding natural values among

the complex numbers.
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